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An Ionically Driven Molecular ACHTUNGTRENNUNGIMPLICATION Gate Operating in
Fluorescence Mode
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Introduction

Since the first reports on molecular logic gates,[1] the devel-
opment of molecules that are capable of performing Boo-
lean operations has received increasing attention.[2,3] The
concept of molecular logic is fuelled by the long-term goal
of molecular computation,[4] but some recent examples have
shown that, in the short term, the implementation of Boo-
lean operations at the molecular scale can also improve the
performance of methods and stimulate new advances in the
fields of chemical sensing, diagnostics, and functional bio-
chemistry.[5–8] Molecular logic gates operate at nanometric

dimensions[9] and are in most cases designed to deliver an
optical output when fed with chemical or optical inputs,
which potentially uses all of the benefits of light and lumi-
nescence as a media for communication.

Today, a variety of molecular logic gates have been re-
ported.[2,3] Sophisticated examples are able to process more
than two inputs[7,10] or can even execute simple arithmetic
calculations.[5,8] Initial integrated arrays of molecular logic
gates[11] and practical applications, such as molecular compu-
tational identification,[6] have also recently been reported.
However, when examining the table of Boolean opera-
tions,[12] it is apparent that small molecule and biomolecule-
based logic gates have mainly been developed for the com-
mutative operations AND/NAND (G1/G14), OR/NOR (G7/
G8), and XOR/EQU (G6/G9) as well as for two of the four
non-commutative gates, the exclusion or INHIBIT gates G2

and G4 (Table 1).[13] With respect to IMPLICATION gates
(G11 and G13), to the best of our knowledge, only one report
of a molecular logic gate has been published so far.[14] How-
ever, IMPLICATION operations in which one input implies
the other, that is, if input A is equal to one then input B has
to be equal to zero, are important because they are equiva-
lent to the IF-THEN operation and the NOT operation.[15]

Aside from AND and OR, NOT is one of the three key
Boolean operations in database searching and information
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retrieval.[16] On the basis that logic gates with fluorescence
readout are particularly attractive and that the first example
reported by de Silva and McClenaghan was achieved by
using changes in transmittance,[14] we present here the
design of and proof-of-principle for an ionically driven mo-
lecular IMPLICATION gate that operates through fluores-
cence.

Results and Discussion

Design considerations and syn-
thesis : Most molecular logic
gates reported in the literature
to date display changes in fluo-
rescence as output (Out) signals
and generally utilize photoin-
duced electron transfer (PET)
or intramolecular charge trans-
fer (ICT) as the addressable
processes.[2,3] As the majority of
these systems are AND, OR,
XOR, or INHIBIT gates, in
which Out equals zero in the
absence of both inputs (In), the
challenge was to create a mole-
cule that is fluorescent (Out=

1) when InA= InB=0 and is
only quenched in the presence of one input alone, as re-
quired for IMPLICATION (Table 1). Because IMPLICA-
TION gates are non-commutative and cannot be expressed
by the negation of one of the other fifteen gates, conven-
tional design employing, for instance, two PET processes
was ruled out. Systems based on two PET processes are usu-
ally quenched in the free state and the presence of one and/
or the other input interrupts PET and leads to enhanced
emission, which often shows AND or OR behavior.[2] Fur-
thermore, when two ICT processes are coupled in a fully
conjugated donor–acceptor[17] or donor–acceptor–donor
system,[18] commutative XOR, EQU, or NAND gates result.
Instead, we implemented two ICT processes in our target
structure 1 (Scheme 1), but chose an electronically decou-
pled architecture so that one of the ICT processes formally
represents a PET process through a “virtual” or zero
spacer.[19] The dye scaffold that seemed most suitable to us
for realization of our aim was the boron–dipyrromethene
(BDP) chromophore that has versatile functionalisation
chemistry and is suited to multiple switching of fluorescence
by different inputs.[20] The synthesis of 1 followed a proce-
dure that was previously employed for the preparation of
3,[21] that is, treating 2[22] with 4-(1,4,7,10-tetraoxa-13-azacy-
clopentadecan-13-yl)benzaldehyde[23] in the presence of
acetic acid, piperidine, and molecular sieves in toluene at
reflux.

Realization of InA= InB=0!Out 1=1: The two p-conjugat-
ed units in 8-aryl-substituted BDPs are perpendicularly ori-
ented when the BDP core has two methyl groups in the 1
and 7 positions (q�908, Scheme 1). The p systems of the di-
pyrromethene unit and the aromatic group at the 8-position
are electronically decoupled. As the 8-phenyl group has nei-
ther an electron donor nor acceptor character, it has virtual-
ly no influence on the optical properties of the BDP chro-
mophore (Figure 1). Compound 4 shows the characteristic
intense BDP fluorescence at around 510 nm in solvents of
any polarity with, for example, Ff(4)=0.60 in MeCN.[24] If

Abstract in German: Ein am Kern unsymmetrisch ver-
l�ngerter Bordipyrromethen-(BDP) Farbstoff wurde mit zwei
Elektronen schiebenden makrozyklischen Bindungseinheiten,
die sich in ihren Metallionenpr�ferenzen unterscheiden, ver-
sehen, um als molekulares IMPLICATION-Gatter zu fungie-
ren. Um eine starke intramolekulare Ladungstransfer- (intra-
molecular charge transfer, ICT2) Fluoreszenz zu generieren
und Kationen induzierte spektrale Verschiebungen in Ab-
sorption zu garantieren, wurde ein auf Na+ ansprechender
Tetraoxa-aza-Kronenether R2 in das verl�ngerte p-System des
BDP-Chromophors integriert. Ein Dithia-oxa-aza-Krone-
nether R1, welcher auf Ag+ anspricht, wurde an der meso-Po-
sition des BDP-Kçrpers in einer elektronisch entkoppelten
Art und Weise eingef8hrt, um unabh�ngig von ICT2 einen
zweiten, die Fluoreszenz lçschenden ICT1 kontrollieren zu
kçnnen. Das bifunktionelle Molek8l wurde so konstruiert,
dass ICT1 in der Abwesenheit beider Eingabeparameter nicht
mit ICT2 konkurrieren kann und ein intensives Fluoreszenz-
signal ausgegeben wird (InA= InB=0!Out=1). Dement-
sprechend f8hrt die alleinige Bindung von Ag+ an R1

(InA=1, InB=0) sowie die Komplexierung beider Rezeptoren
(InA= InB=1) ebenfalls zu Out=1. Nur wenn Na+ an R2 ge-
bunden wird und R1 in freiem Zustand vorliegt, erfolgt Fluo-
reszenzlçschung. Letzteres zeichnet den charakteristischen
Zustand InA=0, InB=1!Out=0 aus, der f8r das logische
IMPLICATION-Gatter und Boolesche Operationen wie IF-
THEN oder NOT bençtigt wird.

Table 1. Selected commutative and non-commutative Boolean operations.[a] For further details on all 16
gates,[b] see Table S1 in the Supporting Information.

Gate A=0 A=0 A=1 A=1 Logic Ref.[e]

No.[a,b] B=0[c] B=1[c] B=0[c] B=1[c] gate[d]

G1 0 0 0 1 AND(†) [44]
G2 0 0 1 0 INHIBIT [45]
G4 0 1 0 0 INHIBIT [45]
G6 0 1 1 0 XOR(§) [46]
G7 0 1 1 1 OR(#) [47]
G8 1 0 0 0 NOR(#) [48]
G9 1 0 0 1 EQU(§) [17,49]
G11 1 0 1 1 IMPLY [14]
G13 1 1 0 1 IMPLY [14]
G14 1 1 1 0 NAND(†) [50]

[a] The notation used in this article was adopted from ref. [43]. [b] Six of the sixteen operations are rather triv-
ial in terms of molecular design and fluorescence output, see the Supporting Information. [c] Output pattern
for Input combinations. [d] Abbreviations in accordance with ref. [43]. These abbreviations are used in most
articles on molecular logic gates. Symbols in brackets relate commutative operations. IMPLY stands for IM-
PLICATION. [e] Two representative references of molecular logic gates performing the respective operation
have been chosen from the recent literature.
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an electron-donating group, such as a crown aniline, is intro-
duced to the 8-position, both units are still decoupled in the
ground state and the absorption spectrum of 2 is a linear
combination of the bands of the subunits with maxima at
l=265 (aniline) and 497 nm (BDP). After excitation in
polar solvents however, an excited-state ICT process (ICT1

in Scheme 1) is activated. As ICT1 involves decoupled moi-
eties, it has a largely forbidden nature and quenches the
fluorescence (Ff(2)�10�4 for 2 in MeCN) while having vir-
tually no effect on the spectral position of the emission
band (Figure 1, top).[22]

In contrast, if an amino group is introduced through a
styryl extension to the BDP core as in 3, a p-conjugated,
planar ICT chromophore with redshifted absorption at
around 600 nm, is obtained in which the amino and BDP
groups act as donor and acceptor (Figure 1).[21] As the
styryl–BDP chromophore remains planar in the excited
state, ICT2 is highly allowed and 3 is a brightly red-emitting

dye with Ff(3)=0.13 in MeCN.
Important for the design of 1 is
now the fact that the step from
4 to 3 raises the energy of the
HOMO localized on the styryl–
BDP fragment sufficiently[25] so
that exchange of an 8-phenyl
for an 8-anilino group (step
from 3 to 1) does not activate
the quenching ICT1 process,
therefore, 1 is also brightly red
fluorescent (Table 2, Figure 1).
As the A15C5 unit at R2 in 1 is
a weaker donor than the N-
ACHTUNGTRENNUNG(CH3)2 group in 3, the emission

of 1 is blueshifted by 25 nm. This shift reduces the influence
of internal conversion according to the energy-gap law and
leads to a higher Ff of 1 than 3.[21] In conclusion, for 1,
InA= InB=0 results in Out1=1 (Table 3).

Figure 2 illustrates the charge-transfer features with the
aid of gas-phase calculations of 1–4 and the protonated spe-
cies of 1.[26] When comparing the energy level diagrams of
1–4, it is apparent that the ICT1 process from a molecular
orbital localized on the 8-substituent to the LUMO localized
on the BDP can only successfully compete with the BDP-
centered transition in highly polar environments for 2.

Performance in the presence of inputs : The other In/Out
combinations can be rationalized as follows: Binding of a
cationic input (Ag+) at decoupled R1 engages the lone elec-
tron pair of the anilino nitrogen, thus diminishing the ab-
sorption band at 265 nm (see e265 entry for 1–Ag+ in Table 2
and inset of Figure 3), and reduces the strength of the 8-
donor. The latter has no effect on the fluorescence because
unbound R1 is already a strong donor and is unable to

Scheme 1. Chemical structures of molecular logic gate 1 and model compounds 2–4. ICT1 and ICT2 denote ad-
dressable processes.

Figure 1. Absorption and fluorescence spectra of 2 (solid line, top) and 4
(dotted line, top), and 1 (solid line, bottom) and 3 (dotted line, bottom)
in acetonitrile at 298 K (c1–4=2 mm). The fluorescence spectrum of 2 was
magnified for a better comparison. The light grey bars indicate the
region of the lowest-energy transition localized on the anilino group in
the 8-position of 1 and 2.

Table 2. Spectroscopic data of 1 in the absence and presence of the two
inputs Ag+ (InA) and Na+ (InB) in acetonitrile at 298 K.

Species e265 [m
�1 cm�1] labs ACHTUNGTRENNUNG(BDP) [nm] lem [nm] Ff

1 28500 600 707 0.18
1–Ag+ 14600 604 717 0.21
Na+–1 27200 572 703 0.04
Na+–1–Ag+ 15000 574 707 0.19

Table 3. Truth table of operations for 1 (IMPLY stands for IMPLICA-
TION).

InA InB Out1 Out2 Out3 Out4
Ag+ Na+ Ff e265 labs

600 (labs
265+labs

600)

0 0 1 1 1 1
1 0 1 0 1 1
0 1 0 1 0 1
1 1 1 0 0 0

IMPLY INVA INV B NAND
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quench the fluorescence through the ICT1 pathway. Binding
of Ag+ further lowers the energy level of the molecular or-
bital (MO) localized on the 8-group with respect to the fron-
tier MOs (cf. 1 vs. 1�H, Figure 2) so that InA=1 and InB=0
yields Out1=1 (Figure 3, Table 3). Ag+ (0.5 mm) was chosen
for InA because it binds selectively to AT212C4 in acetoni-
trile at that concentration and not to A15C5.[27,28] At that
concentration full complexation is also guaranteed. With re-
gards to ICT2 and the installation of the single specific
Out1=0, it was also important to use a cation as InB because
binding of a cation at donor R2 reduces ICT2. The latter

effect shifts the electronic fea-
tures in such a way that
quenching by ICT1 from un-
bound R1 is now activated (1 vs.
H�1 in Figure 2, Figure 3). Na+

(20 mm), which has a high pref-
erence for A15C5, was chosen
to be InB.

[29] As in the case of
Ag+ , the chosen concentration
guarantees full complexation.
The entries for Na+–1 in
Tables 2 and 3 show that when
InA=0 and InB=1 the fluores-
cence is indeed quenched and
Out1=0.

The results for InA= InB=1
are then straightforward. When
Ag+ is added to a solution of
Na+–1, activated ICT1 is again
interrupted (cf. H�1 vs. H�1�H
in Figure 2) and fluorescence is
restored (Out1=1). The same is
found when Na+ is added to 1–
Ag+ (1�H to H�1�H,

Figure 2), that is, a highly fluorescent species remains highly
fluorescent. Control experiments revealed that in agreement
with the coordination chemistry of mixed heteroatom mac-
rocycles[30] and studies on other ICT probes that contain
either the A15C5 or the AT212C4 crown,[22,31,32] all of the
complexation reactions discussed herein are reversible.[33]

The use of a metal ion responsive R2 was not only important
to trigger the quenching process, but also to guarantee that
all of the emission bands appear in the same spectral region.
If protons were used as inputs then the combination of PET
and ICT in a single molecule would again yield only com-
mutative operations, such as XOR/EQU[34] or OR/NOR.[35]

However, when employing metal ion receptors one can
profit from the fact that in styryl dyes with ICT processes,
such as ICT2 in 1, metal ion binding leads to strong blue-
shifts in absorption yet minor shifts in emission owing to ex-
cited-state de-coordination.[31,32] The latter avoids covalent
bond formation, for example, by protonation, and hence, un-
desirable blueshifts in both absorption and emission. There-
fore, Na+–1 and Na+–1–Ag+ only show hypsochromically
shifted absorption bands, but emission bands that largely
overlap with those of 1 (Figure 3), which enables readout at
one emission wavelength.

Conclusion

In summary, a first molecular IMPLICATION gate based
on a specific fluorescence-quenching mechanism was devel-
oped by integrating two decoupled, yet communicating, ICT
processes in a small molecule and two metal ion inputs. The
quenched state (Out=0) for InA=0 and InB=1, which dis-
tinguishes an IMPLICATION gate was achieved by electron

Figure 2. Schematic representation of energy levels of the frontier molecular orbitals localized on the styryl–
BDP or BDP (solid line) and the highest lying occupied MOs localized on the 8-aryl moiety (dotted line;
An=aniline, An�H=protonated aniline, Ph=phenyl) as calculated for 1–4 and protonated derivatives (de-
noted “H”) as model structures for the complexes (see pictograms) in the gas phase. Solid arrows: ICT2,
dashed arrows: BDP-localized (LE), and dotted arrows: ICT1 transitions. In polar solvents, ICT1 with a higher
dipole moment than ICT2 and a much higher dipole moment than LE can be sufficiently stabilized only for
H�1 and 2 (gray circles) to induce quenching.

Figure 3. Absorption (top) and fluorescence (bottom) spectra of 1
(black), 1–Ag+ (red), Na+–1 (blue), and Na+–1–Ag+ (green) in acetoni-
trile at 298 K (c1=2 mm, cAg=0.5 mm, cNa=20 mm). The inset shows the
enlarged high-energy region of the absorption spectra. Horizontal lines
mark the thresholds for readout “0” versus “1”, gray bars mark the spec-
tral windows for optimum readout.
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density control through site-specific metal ion complexation.
When considering all of the different outputs as shown in
Table 3, 1 is not only an IMPLICATION gate, but also de-
livers the INVerted input pattern through specific absorp-
tion signals (whenever Ag+/Na+ is present the aniline/BDP
band is diminished) and serves as a NAND gate through the
combined absorption response. After having demonstrated
the proof-of-principle, current work is now aimed at ad-
dressing the issues of ion concentration, because it would be
desirable to use similar concentrations for both inputs, and
operation in aqueous media.

Experimental Section

General : All solvents and chemicals were of reagent grade quality, ob-
tained commercially, and used without further purification. Melting
points were recorded on a Reichert Thermovar micro melting apparatus
and are not corrected. 1H NMR spectra were measured by using an
Avance 300 spectrometer. Mass spectra were recorded by using Varian
CH-5 and Finigan MAT 95 instruments. IR spectra were obtained by
using a Biorad FTS 155 spectrometer with KBr disks. All solvents em-
ployed for spectroscopic measurements were of UV-spectroscopic grade
and purchased from Aldrich. Metal perchlorates purchased from Aldrich
were of highest purity available and dried as described previously.[32]

Synthesis of 1: Compound 2 (0.020 g, 0.04 mmol),[22] N-A15C5-benzalde-
hyde (0.015 g, 0.04 mmol),[23] acetic acid (0.15 mL), piperidine (0.18 mL),
and a small amount of molecular sieves (3–4 T) in toluene (5 mL) were
heated at reflux for 48 h. After cooling, separation by five chromato-
graphic runs on silica gel by using dichloromethane/acetonitrile (5:3) as
the eluent, and preparative HPLC 1 was obtained as a blue solid
(0.006 mg, 0.007 mmol, 16%). M.p. 178–180 8C; 1H NMR (400 MHz,
CDCl3, TMS): d=7.49–7.46 (m, 3H; aryl, CH=CH), 7.20–7.14 (m, 1H;
CH=CH), 7.06–7.03 (m, 2H; aryl), 6.73–6.58 (m, 5H; aryl, pyrrole�H),
5.95 (s, 1H; pyrrole�H), 3.82–3.54 (m, 28H; CH2), 2.96–2.82 (m, 8H;
CH2), 2.57 (s, 3H; CH3), 1.53 (s, 3H; CH3), 1.50 ppm (s, 3H; CH3); FTIR
(KBr): 2967, 2935, 2857, 1656, 1594, 1543, 1529, 1496, 1384, 1298, 1182,
1120, 986 cm�1; MS (EI, 70 eV): m/z: (%): 834 (100) [M+]; HRMS (EI,
70 eV): m/z: calcd: 834.3841; found: 834.3836;.[36]

Optical spectroscopy : Absorption and fluorescence measurements were
carried out in acetonitrile by using a Cary 5000 UV/Vis-near-infrared
spectrophotometer and a Spectronics Instrument 8100 spectrofluorome-
ter. For all measurements, the temperature was kept constant at 298�
1 K. Only dilute solutions with an absorbance of less than 0.1 at the ab-
sorption maximum were used. Fluorescence experiments were performed
with a 908 standard geometry, with polarizers set at 54.78 for emission
and 08 for excitation. The fluorescence quantum yields (Ff) of 1 were de-
termined relative to cresyl violet in methanol (Ff=0.54�0.03)[37] and
rhodamine 101 in ethanol (Ff=1.00�0.02).[38] All of the fluorescence
spectra presented herein were spectrally corrected as described in
ref. [39] The uncertainties of measurement were determined to be �5%
(for Ff>0.2) and �10% (for 0.2>Ff).

Quantum chemical calculations : Geometry optimizations were performed
by employing the semiempirical AM1 method (gradient <0.01; AMPAC
V6.55, Semichem).[40] Transition energies were calculated on the basis of
the corresponding ground-state geometries and 1SCF calculations with a
singly excited CI approach including 129 configurations by the methods
AM1 (Ampac V6.55, Semichem) and ZINDO/S.[41] Owing to the low
quality of the parameterization of the metal cations in the program, the
various protonated species of 1 that represent the extreme points of ana-
lyte binding were modeled and analyzed theoretically. As binding of the
metal ion to the nitrogen, the only heteroatom of the receptor that is in-
tegrated into the chromophoric p system, is the single binding event that
is decisive for the spectroscopic response, the other heteroatoms in the
crown, which presumably coordinate to the metal ion, have no relevance

for the trends of shifts to be expected in the chromophore. Moreover,
calculations of protonated species are known to yield reliable approxima-
tions of the metal ion complexes for illustrative purposes.[25,42] The values
in Figure 2 are thus only a schematic representation of trends that are
also to be expected for the metal ion complexes.
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